Home Page Hebern's machines Home Page Hebern 1 rotor Home Page Cryptanalysis, Home Page
|
IntroductionIn the previous chapters, we studied the method of Friedman intervals v1. In all cases studied, part of the basic key was known (keyboard and/or lampboard). In this chapter, we know nothing. In short, we do not know any permutation. The methodThe direct methodIt is always possible to reconstruct some basic cipher-text sequences. If we have enough sequences, we can attack the cryptogram like a gigantic simple substitution. Reconstruct the Lampboard permutationWe can also reconstruct the Lampboard permutation. Then we removes it from the cryptogram. The resulting cryptogram is produced by two permutations: the rotor and the keyboard. We have already covered this problem in one of the previous chapters. Probable wordThere is a short-cut if you know the beginning of the text. We can easily associate a plain text letter with each of the basic cipher-text sequences found. ExampleWe construct the cryptogram: C:\H1_TOOLS> python hebern1_tui.py -R c5 -K LFS -L RFS < MSGS\baskerville.pln > MSGS\basker5.cry C:\H1_TOOLS> python groupe.py < MSGS\basker5.cry BLQFM XEQTM QRRXM AOORJ IUNKC XFSGT PONZQ RFRWN GHCGP OTLRG YFPSG BWBOM MCADV PMBBS WTTAR HTUQX KPEKS MSOAG GFWDX AZACB HPZXU XKLFI GTJDS HWTBX QZWFK CLXZX SSQPB STBHY JARWL MHGPV CFZGT KSKZG UPPWS XQRPW LBUOO OKFYT MKBRF VDDOZ AMAGX URSPP BEMJW ABKTX GKKSB MBXUR PRUET SMVXU YAGNT NFSPA GIHBK QAFDZ KYBFE ROATQ EXBYP KINFR UYBOG DJWZK FNLMT XNZLY EYCZM MBXIN UXVGE NPFYS YILTF QYPSB FCHRR SGDTC NKWFN WXLNE DLNMV MTTKX MDPXY ZQMPZ YPVIB ZZLZJ UPCVJ QCEWR PNZPI JHDWL NGAWZ CEIAC HQIFE SKPYU WFNQN EXEMH UPPWS WAOOS GRTCL MCUBZ IISQC LMFXL JUGWO GZXVY BNFIQ RZXFV ZMBSL SOWOM YVLAU SIFFV IFEXE YLGVB ... We analyze the cryptogram: C:\H1_TOOLS> python friedman.py -I 5 < MSGS\basker5.cry A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A: 0 2 0 2 10 12 0 0 0 1 3 1 1 5 6 1 0 2 8 10 5 8 2 6 0 2 B: 0 1 0 7 19 7 0 2 1 2 6 3 1 21 5 1 0 8 10 10 5 10 0 2 0 5 C: 0 0 1 1 3 1 0 3 0 1 0 1 0 4 1 0 0 1 4 1 4 2 0 3 0 1 D: 0 1 0 2 4 2 0 0 0 0 2 0 0 0 2 0 0 4 2 3 1 2 1 2 0 1 E: 0 0 0 0 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 F: 0 1 0 2 9 8 2 3 0 1 0 4 2 4 5 1 1 4 6 2 7 5 0 7 0 4 G: 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 5 0 2 0 1 H: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I: 0 3 0 5 13 6 0 1 0 3 5 4 1 5 9 2 0 4 7 9 4 6 0 7 0 5 J: 0 3 0 5 10 17 2 6 0 3 1 5 1 12 14 1 2 0 10 13 11 9 1 9 0 8 K: 0 4 0 3 12 8 5 3 0 1 3 4 1 8 10 2 4 7 11 10 6 8 0 6 0 6 L: 0 6 0 7 11 3 1 2 0 2 1 5 1 8 6 4 4 3 8 6 5 11 0 6 0 1 M: 0 2 0 3 6 3 3 1 0 1 1 1 1 3 4 0 0 0 2 5 4 5 0 8 0 1 N: 0 2 0 4 3 1 1 2 0 0 1 2 3 1 1 1 0 1 1 2 2 4 0 1 0 2 O: 0 2 0 1 5 3 1 1 0 0 0 0 1 3 3 0 3 0 1 1 4 3 0 4 0 0 P: 0 1 0 1 4 2 0 2 0 2 1 1 1 1 3 1 0 1 2 6 3 5 1 5 0 2 Q: 0 0 0 0 4 6 0 0 0 2 0 0 0 3 0 0 0 1 3 2 1 5 0 2 0 1 R: 0 2 0 0 2 1 1 0 0 0 0 0 0 0 2 2 1 1 1 1 2 1 0 1 0 2 S: 0 6 0 1 3 3 2 1 0 0 0 0 1 7 5 0 2 2 6 6 6 7 0 5 1 4 T: 0 0 0 1 2 2 2 2 0 2 1 1 1 3 3 0 1 0 0 4 1 4 0 0 0 0 U: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X: 0 3 0 5 22 12 3 7 0 4 5 3 4 12 15 2 2 7 18 13 13 12 1 14 0 7 Y: 0 3 0 8 13 4 1 4 0 1 0 1 1 10 4 2 1 5 13 10 8 7 1 9 0 1 Z: 0 2 0 1 6 0 1 0 0 0 0 0 0 6 4 0 0 1 1 4 2 4 0 1 0 1 0 44 1 59165102 27 40 1 26 31 36 22118103 20 21 52115119 95124 7101 1 55 After a lot of work, we found the following basic cipher-text sequences (corresponding to the most frequent letters): a b c d e f g h i j k l m n o p q r s t u v w x y z (1) E S F H B X G M A D J R V W P D K C Z N Y U I Q T O (2) V E Q O K B T S C U K H A Y L X J G N M D F R W Z T (3) T K L P M J O B H X A W N S E R U Y I V C Q L Z F G (4) N X Z G P K U W Q O L Y I E M H D J R E F B C V A T It is assumed that the message begins with the word "CHAPTER": Let's analyze this beginning: Key Crypto Plain Hypothesis a B C b L H c Q A Sequence 2 correspond to letter A d F P e M T Sequence 3 correspond to letter T f X E Sequence 1 correspond to letter E g E R Sequence 4 probably corresponds to either the letter O or the letter N, the two most frequent letters not yet associated with a sequence. These deductions will help us enormously in finding the final solution. If we then have a multitude of cribs, we can position them. |