The Friedman's Interval method (find Rotor V wiring)


Home Page
Hebern's machines
The 5 rotors machine home page

Introduction

If the wiring of the rotor in position V (fast rotor) is reconstructed, the plain text of the cryptograms encrypted by the Hebern machine can be (more or less easily) deciphered.

We can see that this is the most important step. Friedman achieved this feat by inventing a new statistical method, the interval method, which we will describe in this page.

Note: I have called Friedman's method the "interval method". Friedman does not use any particular name.

The plan of this Page

  • Analysis of the Hebern machine, concept of Basic Cipher text Sequence (link).
  • Letter frequency and intervals (link).
  • The first interval method (link).
  • The second interval method (link).
  • An example of reconstructing the wiring of the rotor V (link).
  • A few comments (link).

Analysis of the Hebern machine, concept of Basic Cipher text Sequence

If we look at the encryption table of a Hebern machine, each column corresponds to the encryption of the same letter (E, T, A, etc.). Friedman calls these columns: “Basic cipher-text sequence".

If we have a sequence of cryptograms for which the right rotor (Fast-rotor) is always the same, the basic cipher-text sequences are used throughout the messages without alteration. Simply, their position (the column number) varies every 26 letters, as the other rotors move forward and the keyboard wiring equivalent of the 1-rotor machine changes accordingly. We can see that every 26 letters, the meaning of the columns changes: a column no longer corresponds to the same letter in plain text.

Knowledge of all basic cipher-text sequences is sufficient to decipher any cryptogram in the case of a 1-rotor Hebern machine (because the keyboard permutation does not change). In the case of a 5-rotor machine, every 26 letters, we have isomorphic messages (encrypted with a simple substitution, but different each time).

In the following example, we have 26 cryptograms. Each cryptogram corresponds to the encryption of a single letter encrypted 52 times. The plain text of the first cryptogram therefore begins with "AAAA...", the second with "BBBB....", etc. We choose the external key such that only the rotor V advances for each slice of 26 letters.

C:\H5_TOOLS> echo "AAAA" | python hebern5_tui.py -E ZZAAAZN
YOND

  0    5   10   15   20     26  30   35   40   45   50
A YONDSWMAUZXFLQKGXVHRBTECJP RGWULZAQOVFTCPHYENMDIYXKSJ
B QISFTDPJVAWNYJBLGHEXRKOUMC UVEWNYHIMWCGORDQPSXFJZBALK
C UVEWNYHIMWCGORDQPSXFJZBALK NXZGPKUWQOLYIEMHDJREFBCVAT
D APVIGUFYWSMZKBNOLETCQHJIRD JWXCRQYHILDPFMANZBGTKOUSGE
E CQOJYVWPNHEVSZTIMFABUXDLKR DAPTWMBVEROLUXCFQZUJNIKGYS
F RGWULZAQOVFTCPHYENMDIYXKSJ ZYDVUSIFPNHCMAXERWLKZGQTOB
G DAPTWMBVEROLUXCFQZUJNIKGYS GTYBXNKUZERMDIJVAMQSLWPOHF
H KUBSOCLXBIPEZFVTHDJQANGRWM WRTXQENCDGBSHUZMOLKIVRAJPY
I LHJYFTQKGBSOQNRPCUDZWEMXIV TKLPMJOBHXAWNSERUYIVCQLZFG
J SCULZFSRYMGQWOIJVKPHTANDBX APVIGUFYWSMZKBNOLETCQHJIRD
K PBMRAGVEKJYITCOUSXFLODWHQZ CQOJYVWPNHEVSZTIMFABUXDLKR
L ZYDVUSIFPNHCMAXERWLKZGQTOB VEQOKBTSCUKHAYLXJGNMDFRWZI
M OFKMHLJTSCIXGDUZBRWAPVYENA BDIZVOCLRFTJXGSANPYWEMHPUQ
N HJCNDPXGFQZKBTFWIASOMLVYEU PBMRAGVEKJYITCOUSXFLODWHQZ
O WRTXQENCDGBSHUZMOLKIVRAJPY SCULZFSRYMGQWOIJVKPHTANDBX
P VEQOKBTSCUKHAYLXJGNMDFRWZI YONDSWMAUZXFLQKGXVHRBTECJP
Q GTYBXNKUZERMDIJVAMQSLWPOHF OFKMHLJTSCIXGDUZBRWAPVYENA
R MNHEIRDNLTUAJKYCFQVGSPZBXW HJCNDPXGFQZKBTFWIASOMLVYEU
S ESFHBXGMADJRVWPDKCZNYUIQTO IMRAJHZOXPVBELQKWTCYGSFNDH
T IMRAJHZOXPVBELQKWTCYGSFNDH LHJYFTQKGBSOQNRPCUDZWEMXIV
U BDIZVOCLRFTJXGSANPYWEMHPUQ FLAKEIRZJYQDPHGSTOBUXCTMVN
V NXZGPKUWQOLYIEMHDJREFBCVAT QISFTDPJVAWNYJBLGHEXRKOUMC
W JWXCRQYHILDPFMANZBGTKOUSGE XZGQCAEDTKNURVWBYIOPHJSFCL
X XZGQCAEDTKNURVWBYIOPHJSFCL ESFHBXGMADJRVWPDKCZNYUIQTO
Y TKLPMJOBHXAWNSERUYIVCQLZFG KUBSOCLXBIPEZFVTHDJQANGRWM
Z FLAKEIRZJYQDPHGSTOBUXCTMVN MNHEIRDNLTUAJKYCFQVGSPZBXW

We can see that each line is divided into two sequences of 26 letters. Each sequence corresponds to only one of the 26 basic cipher-text sequences possible (here online instead of being in columns as in the case of a cipher table). Simply, when the other rotors (I,II,III,IV) move forward, the same clear letter no longer uses the same basic cipher-text, but another.

In the following example, we have cryptograms which also correspond to the encryption of a single letter but the effect of the Lampboard permutation has been removed (you obviously need to know it).

A BCPHQNFXEWGIUKMYGLRVOADSJZ VYNEUWXKCLIASZRBDPFHTBGMQJ
B KTQIAHZJLXNPBJOUYRDGVMCEFS ELDNPBRTFNSYCVHKZQGIJWOXUM
C ELDNPBRTFNSYCVHKZQGIJWOXUM PGWYZMENKCUBTDFRHJVDIOSLXA
D XZLTYEIBNQFWMOPCUDASKRJTVH JNGSVKBRTUHZIFXPWOYAMCEQYD
E SKCJBLNZPRDLQWATFIXOEGHUMV HXZANFOLDVCUEGSIKWEJPTMYBQ
F VYNEUWXKCLIASZRBDPFHTBGMQJ WBHLEQTIZPRSFXGDVNUMWYKACO
G HXZANFOLDVCUEGSIKWEJPTMYBQ YABOGPMEWDVFHTJLXFKQUNZCRI
H MEOQCSUGOTZDWILARHJKXPYVNF NVAGKDPSHYOQREWFCUMTLVXJZB
I URJBIAKMYOQCKPVZSEHWNDFGTL AMUZFJCORGXNPQDVEBTLSKUWIY
J QSEUWIQVBFYKNCTJLMZRAXPHOG XZLTYEIBNQFWMOPCUDASKRJTVH
K ZOFVXYLDMJBTASCEQGIUCHNRKW SKCJBLNZPRDLQWATFIXOEGHUMV
L WBHLEQTIZPRSFXGDVNUMWYKACO LDKCMOAQSEMRXBUGJYPFHIVNWT
M CIMFRUJAQSTGYHEWOVNXZLBDPX OHTWLCSUVIAJGYQXPZBNDFRZEK
N RJSPHZGYIKWMOAINTXQCFULBDE ZOFVXYLDMJBTASCEQGIUCHNRKW
O NVAGKDPSHYOQREWFCUMTLVXJZB QSEUWIQVBFYKNCTJLMZRAXPHOG
P LDKCMOAQSEMRXBUGJYPFHIVNWT BCPHQNFXEWGIUKMYGLRVOADSJZ
Q YABOGPMEWDVFHTJLXFKQUNZCRI CIMFRUJAQSTGYHEWOVNXZLBDPX
R FPRDTVHPUAEXJMBSIKLYQZWOGN RJSPHZGYIKWMOAINTXQCFULBDE
S DQIROGYFXHJVLNZHMSWPBETKAC TFVXJRWCGZLODUKMNASBYQIPHR
T TFVXJRWCGZLODUKMNASBYQIPHR URJBIAKMYOQCKPVZSEHWNDFGTL
U OHTWLCSUVIAJGYQXPZBNDFRZEK IUXMDTVWJBKHZRYQACOEGSAFLP
V PGWYZMENKCUBTDFRHJVDIOSLXA KTQIAHZJLXNPBJOUYRDGVMCEFS
W JNGSVKBRTUHZIFXPWOYAMCEQYD GWYKSXDHAMPEVLNOBTCZRJQISU
X GWYKSXDHAMPEVLNOBTCZRJQISU DQIROGYFXHJVLNZHMSWPBETKAC
Y AMUZFJCORGXNPQDVEBTLSKUWIY MEOQCSUGOTZDWILARHJKXPYVNF
Z IUXMDTVWJBKHZRYQACOEGSAFLP FPRDTVHPUAEXJMBSIKLYQZWOGN
C:\H1_TOOLS> echo THEELEMENTSOFTHESCIENCEOFC | ^
  python hebern5_tui.py -E OZAAAZN
IUOJUVJPFPJSCLVIKSDBMZDJSK
A cryptogram can be expressed as a series of letters each belonging to a basic cipher-text sequences. We can therefore (for each slice of 26 letters), decompose our cryptogram into a series of mono-substitutions if we know the set of basic cipher-text sequences.
plain    theelementsofthescienceofc
crypto   IUOJUVJPFPJSCLVIKSDBMZDJSK
           OJ V P       I   B  D
  E      CQOJYVWPNHEVSZTIMFABUXDLKR     
         I        P   L          
  T      IMRAJHZOXPVBELQKWTCYGSFNDH     
                    S           J
  O      WRTXQENCDGBSHUZMOLKIVRAJPY

Frequency of letters and letter repetitions

The frequency of letters in a cryptogram does not provide any information: the distribution of letter frequencies is "flat": the probability is 1/26 for each letter of the cryptogram.

Probability of having a repetition of a letter at a given interval

The probability of having a repeated letter is greater, in English, for a given interval, than the probability of having two different letters.

So, in English:

  • Probability of having one E: 0.126,
  • Probability of having two E: PxP = 0.016
  • Probability of having two T: 0.008
  • etc...

Thus, the probability of having any two letters repeated corresponds to the sum of the probabilities of each letter squared:

  P1 = sum from i=0 to 25 ( P(i)** 2 ) = 0.016 + 0.008 + ... = 0.066

However, the inverse probability (probability of having 2 letters diff) is equal to :

  P2 = 1 - 0.066 = 0.934 = P(E...T) + P(E...A) +...
Note: P(E...T)=probability of having the letter "E" separated by three letters from the letter "T".

If we fix the first letter, for example "Y", the second is most likely any letter except a "Y"!

On the other hand, individually, for each letter studied (A,B, ....X,Z) the probability is

 P3 = 0.934/25 = 0.037 

As we can see, the value 0.037 is much lower than 0.066, so we will be able to detect the difference.

What has been said about a repetition of a letter is valid whatever the interval between the two letters: XY, X.Y, X..Y, XY, etc...

We can use any intervals, but if the interval is too small, we have side effects due to frequent multigrams: "ER, RE, TION, MENT, ..." which disrupt the statistics. Consequently, we will take intervals of a minimum value of 3 letters. This type of interval will be named 4 corresponding to the index of the second letter (X...Y) = [0]=X,?,?,?,[4]=Y.

The first interval method

Prepare the cryptogram for analysis

The first step is to create a single cryptogram from the different cryptograms collected during the day. These cryptograms must respect the fact that each column corresponds to a particular position of the rotor V.

Notes: This step was partly carried out when we presented the cryptograms of the 1924 challenge (link). In my example, I simplified my life by analyzing a single large cryptogram.

Intervals and the basic cipher-text sequence

The reconstruction of the rotor wiring is done in several stages:
  • 1) We divide the text into slices of 26 letters encrypted by rotor V with the other immobile rotors. To do this, you need to know the external key to ensure that the other rotors remain stationary.
  • 2) We analyze, for each slice of 26 letters, the intervals between two letters located at the same position and with the same interval.

    For a given interval (for example 3 letters) and a particular position (for example, the first letter in the external key A), we obtain an array of values whose column headers correspond to the first letter. For each box in a column we have the frequency of the pair of letters, the first of which is the head of the column and the second letter corresponds to the row. The box in a column with the highest frequency therefore corresponds to a pair belonging to the same basic cipher text sequence.

    Note: As a reminder, each basic cipher text always codes the same letter.

  • 3) We repeat the previous analysis by varying the interval (4 letters, 5 letters, etc.) and by varying the external key (and therefore the position of the first letter).
  • 4) We analyze the results and deduce one or more basic cipher text sequences.

    Note: for each pair analyzed, we know to which basic cipher text sequence the pair belongs. Indeed if the external key is A, and the first letter of the most frequent pair is Y, this letter identifies the basic cipher text sequence. If the second letter is for example the letter S separated by 3 letters, the following pair S...U starting at the key E, this pair belongs to the same basic cipher text sequence as the previous pair.

  • 5) From two or three basic cipher text sequences, we can deduce the wiring of the lampboard.
  • 6) From a single basic cipher text sequence and knowledge of the lampboard, we can deduce the wiring of the fast rotor.

Friedman tells us that his first method requires an enormous amount of data: nearly 169,000 letters. But even if this quantity of data seems enormous, it is less than a day's traffic.

I have not tested this method in the case of the Hebern 5 rotors machine, but I tested it for the Hebern 1 rotor machine (link). Of course, using this method is simpler in this case, for example, knowledge of the external key is not required. I analyzed a big text of 40,000 letters. I could have taken a much shorter text (at least half as short), but I would have had more difficulty finding the rotor wiring.

Friedman's statistical method version 1 applied to the analysis of a Hebern 1 rotor machine:

The second method of intervals

Friedman evolved his method. Instead of searching for one (or more) basic cipher-text sequence, in an improved version, it directly searches for the wiring of the rotor V. The advantage is that each pair of letters in the wiring can be calculated from an accumulation of statistics and thus require much fewer letters: no more than 2,000 letters.

In the following example, the first line corresponds to the objective: the wiring of rotor V (possibly offset). Each column corresponds to a basic cipher text sequence and therefore to the encryption of the same letter (but limited to a single slice of 26 letters). In the example we chose to remove the effect of permutation lampboard. Friedman does not. Consequently, the diagonals correspond precisely to this permutation (lampboard). Here it is simply the direct alphabet (ABC...Z). The ordinate (AB...Z) corresponds to the external key.

Suppose that in the cryptogram the following interval, "B...Q" located in the first position (external key A) of each series of 26 letters is very frequent because B and Q correspond to the same letter, we can deduce that the letters "B...U" are part of the rotor wiring separated by three letters. Likewise if the following interval "Z...O" located in position 3 (external key C) is frequent, its frequency also contributes to the couple "B...U".

Likewise, if the interval "Q...E" located in the 5th position (external key E) is very frequent, we can deduce that the letters "U...M" are part of the wiring of the rotor V separated by three letters. We can use other intervals, thus the interval "Z.......C" located in the 3rd position (external key C) is frequent, this allows us to deduce that the letters "B.......M" separated of 7 letters are part of the V rotor wiring.

We can see that if we multiply the measurements at different intervals and if the statistics are good (they will be better as the number of letters analyzed is greater), we manages (more or less quickly and easily) to reconstruct the wiring of the rotor V. Friedman estimates that it takes at least 2,000 letters to achieve a correct result.

A   J O I V Z P H M B D R K U S L E M F Q T G X A N W C
B               X A C     T R     L  
C               Z B P   S Q J   K
D               A   H R P   B J
E               N   Q O     I
F               F P N     H A
G               O M F   G   K
H               L   X F     M
I               D   E       Y
J               V D W       O
K               C   G       Q
L               U   I       C
M               E   U       K
...

Example of reconstitution of rotor V wiring

We encrypt a message

We take a message of approximately 8,000 letters. A priori it will be easy to find the solution.
 
C:\H5_TOOLS> more MSGS\conf_naval.pln
THEWASHINGTONNAVALCONFERENCEWASADISARMAMENTCONFERENCECALLED
BYTHEUNITEDSTATESANDHELDINWASHINGTONDCCOMMAFROMNOVEMBER
TWENTIETHONENIVETWOONECOMMATOFEBRUARYSIXTHONENIVETWOTWOZDOTZITWAS
CONDUCTEDOUTSIDETHEAUSPICESOFTHELEAGUEOFNATIONSZDOTZITWAS
ATTENDEDBYNINENATIONSPARENTHEUNITEDSTATESCOMMAJAPANCOMMACHINACOMMAFRANCECOMMA
THEUNITEDKINGDOMCOMMAITALYCOMMABELGIUMCOMMATHENETHERLANDSCOMMAANDPORTUGALPAREN
REGARDINGINTERESTSINTHEPACIFICOCEANANDEASTASIAZDOTZGERMANYWAS
NOTINVITEDTOTHECONFERENCECOMMAASRESTRICTIONSONITSNAVYHAD
ALREADYBEENSETINTHEVERSAILLESTREATYZDOTZSOVIETRUSSIAWASALSO
NOTINVITEDTOTHECONFERENCEZDOTZITWASTHEFIRSTARMSCONTROL
CONFERENCEINHISTORYCOMMAANDISSTILLSTUDIEDBYPOLITICALSCIENTISTS
ASAMODELFORASUCCESSFULDISARMAMENTMOVEMENTZDOTZ
STOP
HELDATMEMORIALCONTINENTALHALLCOMMAINDOWNTOWNWASHINGTONCOMMA
ITRESULTEDINTHREEMAJORTREATIESCOLONFOURPOWERTREATYCOMMAFIVEPOWER
TREATYPARENMORECOMMONLYKNOWNASTHEWASHINGTONNAVALTREATYPARENCOMMATHE
NINEPOWERTREATYCOMMAANDANUMBEROFSMALLERAGREEMENTSZDOTZTHESETREATIES
PRESERVEDTHEPEACEDURINGTHETHENINETEENHUNDREDANDONEYEARS
BUTWERENOTRENEWEDINTHEINCREASINGLYHOSTILEWORLDOFTHE
GREATDEPRESSIONZDOTZ
STOP
THEWORLDSPOPULARMOODWASPEACEANDDISARMAMENT
THROUGHOUTTHENINETEENHUNDREDANDONEYEARSZDOTZWOMENHADJUSTWON
THERIGHTTOVOTEINMANYCOUNTRIESCOMMAANDTHEYHELPEDCONVINCE
POLITICIANSTHATMONEYCOULDBESAVEDCOMMAVOTESWONCOMMAANDFUTURE
WARSAVOIDEDBYSTOPPINGTHEARMSRACEZDOTZACROSSTHEWORLDCOMMALEADERS
OFTHEWOMENSSUFFRAGEMOVEMENTFORMEDINTERNATIONALORGANIZATIONS
SUCHASTHEINTERNATIONALCOUNCILOFWOMENANDTHEINTERNATIONAL
WOMANSUFFRAGEALLIANCEZDOTZ
STOP
ATTHEENDOFWORLDWARONECOMMATHEBRITISHSTILLHAD
THELARGESTNAVYAFLOATCOMMABUTITSBIGSHIPSWEREBECOMINGOBSOLETECOMMA
ANDTHEAMERICANSANDTHEJAPANESEWERERAPIDLYBUILDINGEXPENSIVE
NEWWARSHIPSZDOTZBRITAINANDJAPANWEREALLIESINATREATYTHATWAS
DUETOEXPIREINONENIVETWOTWOZDOTZALTHOUGHTHEREWERENOIMMEDIATE
DANGERSCOMMAOBSERVERSINCREASINGLYPOINTEDTOTHEAMERICANDASHJAPANESE
RIVALRYFORCONTROLOFTHEPACIFICOCEANASALONGDASHTERMTHREAT
TOWORLDPEACEZDOTZBYTHENCOMMACONSIDERINGTHEIRCOLONIALINTERESTS
INASIACOMMATHEBRITISHDECIDEDTHATITWASBETTERFORTHEMTOCAST
THEIRLOTWITHWASHINGTONTHANTOKYOZDOTZTOSTOPANEEDLESSCOMMAEXPENSIVECOMMA
ANDPOSSIBLYDANGEROUSARMSRACECOMMATHEMAJORCOUNTRIESSIGNEDA
SERIESOFNAVALDISARMAMENTAGREEMENTSZDOTZ
STOP
AMERICANDELEGATIONCOMMALEDBYSECRETARYOFSTATECHARLES
EVANSHUGHESCOMMAINCLUDEDELIHUROOTCOMMAHENRYCABOTLODGEANDOSCAR
UNDERWOODCOMMATHELASTBEINGTHEDEMOCRATICMINORITYLEADERINTHE
SENATEZDOTZTHECONFERENCESPRIMARYOBJECTIVEWASTORESTRAIN
JAPANESENAVALEXPANSIONINTHEWATERSOFTHEWESTPACIFICCOMMA
ESPECIALLYWITHREGARDTOFORTIFICATIONSONSTRATEGICALLY
VALUABLEISLANDSZDOTZITSSECONDARYOBJECTIVESWEREINTENDEDTO
OBTAINANULTIMATELIMITTOJAPANESEEXPANSIONANDALSOAN
ALLEVIATIONOFCONCERNSOVERPOSSIBLEANTAGONISMWITHTHEBRITISHZDOTZ
THEYWERETOELIMINATEANGLOAMERICANTENSIONBYABROGATING
THEANGLOJAPANESEALLIANCECOMMATOAGREEUPONAFAVORABLENAVAL
RATIOVISAVISJAPANCOMMAANDTOHAVETHEJAPANESEOFFICIALLY
ACCEPTACONTINUATIONOFTHEOPENDOORPOLICYINCHINAZDOTZ
STOP
THEBRITISHCOMMAHOWEVERCOMMATOOKAMORECAUTIOUSANDTEMPEREDAPPROACHZDOTZ
INDEEDCOMMATHEBRITISHOFFICIALSBROUGHTCERTAINGENERALDESIRES
TOTHECONFERENCECOLONTOACHIEVEPEACEANDSTABILITYINTHEWEST
PACIFICSEMICOLONAVOIDANAVALARMSRACEWITHTHEUNITEDSTATESSEMICOLONTHWART
JAPANESEENCROACHMENTINTOAREASUNDERTHEIRINFLUENCESEMICOLONAND
PRESERVETHESECURITYOFSINGAPORECOMMAHONGKONGCOMMAANDDOMINION
COUNTRIESCOMMABUTTHEYDIDNOTENTERTHECONFERENCEWITHA
SPECIFICLAUNDRYLISTOFDEMANDSZDOTZRATHERCOMMATHEYBROUGHTWITH
THEMAVAGUEVISIONOFWHATTHEWESTPACIFICSHOULDLOOKLIKE
AFTERANAGREEMENTZDOTZ
STOP
JAPANESEOFFICIALSWEREMOREFOCUSEDONSPECIFICSTHANTHEBRITISHCOMMA
ANDTHEYAPPROACHEDTHECONFERENCEWITHTWOPRIMARYGOALSCOLON
TOSIGNANAVALTREATYWITHBRITAINANDTHEUNITEDSTATES
ANDTOOBTAINOFFICIALRECOGNITIONOFJAPANSSPECIAL
INTERESTSINMANCHURIAANDMONGOLIAZDOTZJAPANESEOFFICIALSALSO
BROUGHTOTHERISSUESTOTHECONFERENCECOLONASTRONGDEMANDTO
REMAININCONTROLOFYAPCOMMASIBERIACOMMAANDTSINGTAOASWELLAS
MOREGENERALCONCERNSABOUTTHEGROWINGPRESENCEOFAMERICAN
FLEETSINTHEPACIFICZDOTZ
STOP
THEAMERICANHANDWASSTRENGTHENEDBYTHEINTERCEPTIONAND
DECRYPTIONOFSECRETINSTRUCTIONSFROMTHEJAPANESEGOVERNMENT
TOITSDELEGATIONZDOTZTHEMESSAGEREVEALEDTHELOWESTNAVAL
RATIOTHATWOULDBEACCEPTABLETOTOKYOSEMICOLONUSNEGOTIATORS
USEDTHATKNOWLEDGETOPUSHTHEJAPANESEZDOTZTHISSUCCESSCOMMA
ONEOFTHEFIRSTINTHEUSGOVERNMENTSBUDDINGEAVESDROPPING
ANDCRYPTOLOGYEFFORTSCOMMALEDEVENTUALLYTOTHEGROWTHOF
SUCHAGENCIESZDOTZ
STOP
THEHEADOFTHEJAPANESEDELEGATIONTOTHEWASHINGTONNAVAL
CONFERENCEWASPRINCEIYESATOTOKUGAWACOMMAWHODURINGTHEFIRST
FOURDECADESOFTHETWENTIETHCENTURYLEDAPOLITICALMOVEMENT
INJAPANTHATPROMOTEDDEMOCRACYANDINTERNATIONALGOODWILL
WITHTHEUSCOMMAEUROPEANDASIAZDOTZHISINFLUENCEWASSIGNIFICANT
INTHENEGOTIATIONSANDRATIFICATIONOFTHEWASHINGTONNAVALTREATYZDOTZ
STOP
USPRESIDENTWARRENHARDINGCALLEDTHEWASHINGTONCONFERENCEADEAL
THATALLCOUNTRIESTHOUGHTBESTFORTHEMSELVESZDOTZTORESOLVE
TECHNICALDISPUTESABOUTTHEQUALITYOFWARSHIPSCOMMATHECONFEREES
ADOPTEDASTANDARDBASEDONTHETONNAGEDISPLACEMENTCOMMAASIMPLE
MEASUREOFTHESIZEOFASHIPZDOTZATENYEARAGREEMENTFIXEDTHE
RATIOOFBATTLESHIPSATFIVECOLONFIVECOLONTHREECOLONFIVEHUNDREDTWENTY
FIVETHOUSANDTONSFORTHEUSCOMMAFIVEHUNDREDTWENTYFIVETHOUSAND
TONSFORBRITAINCOMMAANDTHREEHUNDREDFIFTEENTHOUSANDTONSFOR
JAPANZDOTZSMALLERLIMITSWITHARATIOOFONEDOTSIXSEVERAPPLIED
TOFRANCEANDITALYZDOTZBATTLESHIPSCOMMATHEDOMINANTWEAPONSSYSTEMS
OFTHEERACOMMACOULDBENOLARGERTHANTHIRTYFIVETHOUSANDTONSZDOTZ
THEMAJORPOWERSALLOWEDTHEMSELVESONEHUNDREDTHIRTYFIVE
THOUSANDCOLONONEHUNDREDTHRITYFIVETHOUSANDCOLONEIGHTYONETHOUSAND
TONSFORTHENEWLYDEVELOPEDAIRCRAFTCARRIERSZDOTZ
STOP
WHILETHEADMIRALSWEREUNHAPPYCOMMAPEACEACTIVISTSSTRONGLY
SUPPORTEDTHERESULTSANDSUCCESSFULLYWORKEDFORRATIFICATIONZDOTZ
INTHEUNITEDSTATESTHEYINCLUDEDTHEWORLDPEACEFOUNDATIONSEMICOLON
THEAMERICANASSOCIATIONFORINTERNATIONALCONCILIATIONSEMICOLON
THECARNEGIEENDOWMENTFORINTERNATIONALPEACESEMICOLONTHEWOMENSPEACE
SOCIETYSEMICOLONTHEWOMENSWORLDDISARMAMENTCOMMITTEESEMICOLONTHEWOMENS
INTERNATIONALLEAGUEFORPEACEANDFREEDOMCOMMAANDTHEFEDERAL
COUNCILOFCHURCHESOFCHRISTINAMERICAZDOTZ
STOP
THEWASHINGTONCONFERENCEEXACTLYCAPTUREDTHEWORLDWIDEPOPULAR
DEMANDFORPEACEANDDISARMAMENTZDOTZWITHOUTANAGREEMENTCOMMATHEUSCOMMA
BRITAINANDJAPANWOULDHAVEENGAGEDINANEXPENSIVEBUILDUPCOMMA
WITHEACHFEARINGTHEOTHERTWOGETTINGTOOPOWERFULZDOTZHOWEVERCOMMA
EVENWITHTHERESTRICTIONSCOMMATHEAGREEMENTSOLIDIFIEDJAPANS
POSITIONASAGREATPOWERANDWASTREATEDASACOLONIALPOWER
WITHEQUALDIPLOMATICINTERESTSCOMMAAFIRSTFORANONDASHWESTERNNATIONZDOTZ
STOP
THENAVALTREATYWASCONCLUDEDONFEBRUARYSIXTHCOMMAONENINETWOTWOZDOTZ
RATIFICATIONSOFTHETREATYWEREEXCHANGEDINWASHINGTONON
AUGUSTSEVENTEENTHCOMMAONENINETWOTHREECOMMAANDITWASREGISTEREDIN
LEAGUEOFNATIONSTREATYSERIESONAPRILSIXTEENTHCOMMAONENINETWOFOURZDOTZ
STOP
JAPANAGREEDTOREVERTSHANDONGTOCHINESECONTROLBYAN
AGREEMENTCONCLUDEDONFEBRUARYFOURTHCOMMAONENINETWOTWOZDOTZ
RATIFICATIONSOFTHEAGREEMENTWEREEXCHANGEDINBEIJINGONJUNE
SECONDCOMMAONENINETWOTWOCOMMAANDITWASREGISTEREDINLEAGUEOFNATIONS
TREATYSERIESONJULYSEVENTHCOMMAONENINETWOTWOZDOTZ
STOP
STOP
WASHINGTONNAVALTREATYLEDTOANEFFECTIVEENDTOBUILDINGNEW
BATTLESHIPFLEETSCOMMAANDTHEFEWSHIPSTHATWEREBUILTWERELIMITED
INSIZEANDARMAMENTZDOTZMANYEXISTINGCAPITALSHIPSWERESCRAPPED
ORSUNKZDOTZSOMESHIPSUNDERCONSTRUCTIONWERETURNEDINTOAIRCRAFT
CARRIERSINSTEADZDOTZ
STOP
EVENWITHTHETREATYCOMMATHEMAJORNAVIESREMAINEDSUSPICIOUSOF
ONEANOTHERANDBRIEFLYENGAGEDINARACETOBUILDHEAVYCRUISERSCOMMA
WHICHHADBEENLIMITEDINSIZEPARENTENTHOUSANDTONSPARENBUTNOTNUMBERSZDOTZ
THATOVERSIGHTWASRESOLVEDONVALUEOFCRUISERSBYTHELONDON
NAVALTREATYOFONENIVETHREEZEROCOMMAWHICHSPECIFIEDATENCOLONTENCOLONSEVEN
RATIOFORCRUISERSANDDESTROYERSZDOTZFORTHEFIRSTTIMECOMMASUBMARINES
WEREALSOLIMITEDCOMMAWITHJAPANGIVENPARITYWITHTHEUSANDBRITAINCOMMA
ATFIFTYTHREETHOUSANDTONSEACHZDOTZPARENSUBMARINESTYPICALLYDISPLACED
PARENONETHOUSANDTOTWOTHOUSANDTONSEACHZDOTZPARENTHEUSNAVYMAINTAINED
ANACTIVEBUILDINGPROGRAMTHATREPLACEDOBSOLESCENTWARSHIPS
WITHTECHNICALLYMORESOPHISTICATEDNEWMODELSINPARTBECAUSE
ITSCONSTRUCTIONYARDSWEREIMPORTANTSOURCESOFPOLITICAL
PATRONAGEANDSOWEREWELLPROTECTEDBYCONGRESSZDOTZDURINGTHENEW
DEALCOMMARELIEFFUNDSWEREUSEDTOBUILDMOREWARSHIPSZDOTZQUOTETHE
NAVALPROGRAMWASWHOLLYMINECOMMAQUOTEPRESIDENTFRANKLINROOSEVELT
BOASTEDZDOTZ
STOP
THEPACTSANDTHETREATIESTHATRESULTEDFROMTHEWASHINGTONNAVAL
TREATYREMAINEDINEFFECTFORFOURTEENYEARSZDOTZJAPANENDED
PARTICIPATIONINONENINETHREESIXZDOTZ
STOP


C:\H5_TOOLS> python hebern5_tui.py -E ZZAAAZO ^
   < MSGS\conf_naval.pln |  ^
   python groupe.py > MSGS\conf_naval.cry

C:\H5_TOOLS> more MSGS\conf_naval.cry
VSEPU EGHUY KELQX IRRYQ BDBDL UUQXD BWFKA ZUXLD TWWSK OIXZL
ETDXW OKMYI BBBLP CEPQB CZIEK NSMLA CGFFL PCWOQ ZGUSH UEXXG
QWHGB MPZDV ZUNXM HSXNT MEPWN XKREO TJDVZ XEFIL LWMFP OGLRX
...

We remove the Lampboard permutation action

Friedman does not do it, but personally I consider that the reasoning is simpler by performing this step.
C:\H5_TOOLS> python striplamp.py TYOEUMXDFJQVKWBNSHCILRZAGP ^
  MSGS\conf_naval.cry > MSGS\conf_naval.stripped
LQDZEDYREBMDUKGTVVBKOHOHUEEKGHONIMXWEGUHANNQMCTGWUDAH...

We calculate the statistics for different intervals

We start with an interval of index 4, i.e. those corresponding to two letters separated by three letters.
C:\H5_TOOLS> python fried_new.py -I 4 < MSGS\conf_naval.stripped
    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
A: 11 13 13  8 12 11 15 11  8 15 13  9 16  8 14  6 25 13  8 19 20  9 14 13  8 11
B:  7 15 14 21 17 10 11 15  9 10 14 14  9 12 10  6 10  6 10  9 14 11 13 15  9 25
C: 12 16 10 12 15 13 16 10 16 10  8 10  9 12  9 13 14 16  9 10 15 14 18 26 13  8
D: 11 10 12 12 17 13  8 14 11 16 14 10  8 12 12 18  9 10 17 12 10 22 16 13 13  7
E: 10 11  9 18 12 15 16 13  9 14 26 13 10 14  7  7 17 11 10 11 15 17 10  9  8 11
F: 16 12 11 15 14 12 17 12 17 14 14  8 12 11  8  6  8  8 22 12 10 14 13 16 14 11
G: 16 11 11  8  6 17 12 12 14 17 16 17 23 13  9 11 11 10 15  7 12 12 12  7 10  7
H: 11 18 12 12 10 12 12  3 22  7 14 11 16  9 10 12  8 10  6 12 14  9 13 19 12 11
I: 11  7 11  8 12 12 15 10  3 15 12 17 11 11 12 12 11 18  7 15 13  9 24 10  9 10
J: 17 14 14 17  8 10 14  9  6 20 10 14 11 10 13 17 12 17 10 12 11  7 17  8 12 13
K:  9 11 15 11 14 10 11 11 12 11 15 10 12 13  8 16 13  6 17 10 14  7 20 12 24 22
L: 12 15 10  8 10 14  7  6 20 13 11 17 14 13 11  7  8 22 18 10 10 10 20 12 10  9
M: 12  9 21 14 10  7 11 20 15 11  8 12 10 10  6  9  9  8  9  8 22 12 14  9  7  4
N: 11 13 18 20 11 19  7  9 12 12 11 16 12 16 14  7  8 10 11 33  7 15 12 13 15 15
O: 12  7 10 12  7 15 11 13 19  7  5  7  4 29  9  8 12  6 10 12 15  9 11 10 15 12
P:  6 14 15  9  7 13  5 10  7 12 10  8 14 13 15  7  6  7 12 13 13 10  9  7  7 15
Q: 13 14 11 10 11  7 12 11  7  9 10 19 11 12 14  8  4  7 14 16 12 16 10  9  8 14
R: 11  7 14 10 11 15  4 25  9  7  8 13  6 20 11 10  6  9 10 14  9  5 11 19 12 14
S: 12  6 17 15 16 12 12  8  5 13 13 10 11 13 13 10 18 11 16 19 14 11  5 11  9 15
T: 20 12 10 18 25 13 13  9 13 11 15  7 12 19 12 11 10 11 11 12 16  9 13 13 14  6
U: 18 24  9 11 12 14 14  7 15 10 21 15  4 16 19 13 11 12 11 11 17 19 10 16 10  9
V:  9 10 26 15 13 10 11  7 11  9  8 17  9 13 11 11 12 11 18 13 17 15  9 12 12 18
W:  7 14 11 14 14 12 25 21 12 12 16 15 12 15 13 13 14 18  7 10 13 17  8 13  1 11
X: 13 10 12 14 15 14 15 10 12 10 18  8 14 10  6  8 15 10 11 14 13 14  9  6 22 11
Y: 21  8  9  8 12 12 12 13 13 14 14 11  9  9 12 11  4 12 13 10 12 18 10  8  7  7
Z: 15 15 10  7 12 15  9 17  8 24  9 10  8 14  9  7 14 11 13 11  9 16 16  9  8 19
  323316335327323327315306305323333318287347287264289290315335347327337315289315

Results analysis

Note: Due to the high number of data and the fact that we only take the data which give intervals being well above the average, the results are almost certain (in fact we will still have errors). In Friedman's case, his analysis was much more difficult (see his report for details).

The intervals and their frequencies are given in the following table.

B...?	BU(24), BH(18)
C...?   CV(26), CM(21)
E...?   ET(25), EB(17), ED(17)
G...?   GW(25), GF(17)
H...?   HR(25), HW(21), HM(20)
J...?   JZ(24), JJ(20), JD(16)
K...?   KE(26), KU(21)
M...?   MG(23), MH(16)
N...?   NO(29), NT(19)
R...?   RL(22), RV(16)
S...?   SF(22), SL(18), SV(18)
T...?   TN(33), TA(19)
W...?   WI(24), WL(20), WM(20)
X...?   XC(26), XH(19)
Y...?   YK(24), YX(22), YT(14)
Z...?   ZB(25), ZK(22), ZZ(19)
By bringing together the deductions we obtain the following sequences:
B...U,     X...C...V,       Y...K...E...T...N...O, 
M...G...W...I,   H...R...L,        J...Z,    Z...B,
We need more information. We will take a look at some statistics with index intervals 3, 5 and 6:
C:\H5_TOOLS> python fried_new.py -I 3 < MSGS\conf_naval.stripped

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
A: 15 13  9  8 12 14 11 13 10  8 20 15 11 16 11  6 19  7 13 10 15 19 11 10 12 15
B: 15 17 14 10 12 13  7  8 19 14 20 11 11 14 13 20  7  9 11 16 19  6 11  3  8  8
C: 22  7 15 12  8 12 16 10 12 16 13 11 11 13  7  9 13 17  7 20 21 16 12  9 16  9
D: 11 10 10 15 14 15 11 19 15 20  8 12 10 11 15 13  9  3 14  9 20 14 10 11  7 21
E: 14 14 13  7  6 11 11  8 16 10 13  8 16 14 12 10 12 14 12 13 23  8 13 23  9 13
F: 17 10  9 10 11 12 16 15 10 11 13 22  8 16  8  9 12 11 11 16 13 12 21 10  8 16
G: 16 11  9 18 20 16 14 11 13 14 12 13 12  9  5 10  8 12 13  3 11 12 16 11 16 11
H:  9  8 18 10 14 10 12  8 11 15 14  7 14 13 15  5  9  7  9 15 11 21 10 18  7 15
I:  7 10 24  7 13 14 12  6  7 14 11 16 13 14  9 16 10 14  7 10 16  9 11 10 15 10
J:  7 13 12 14 11 12 16 12 10 10 22 16 10 16 12 12  8 13 12 11 10  9  8 20 18  9
K: 13 22 15 12 13 14 14 15 10 12 16 11  9 13 12  9 12 12 14 17 10 13 12 15  9 10
L: 11 18 12  6 16 11 13 13 13  9 13 12  9 17 16  9 10  9 11 13 14 12 10 14 14 12
M:  7  8 10 13 10 21 15  6  9 12  5 13  7 12  4 13  8  7 18 18 11 12 17 12  7 12
N: 14 13 12 14 13 12 19 17  7 12 11 14 11 15 10 12 13 10 17 12 15 20 14 11 18 11
O: 10 11 16 14  8 11 11  5 10  5  6 14 12 12 15 13  9 13 10 11 15 10 14 13  7 12
P:  8  9 10 12  8 15 11 11 11  9 10  8  9  8  9  9  5 19  9  8 10 14 18  7  6 11
Q: 13 15 13  8 12 10  9 15 18 14  6 15  9 14 13 11 11  7 12  8  8 12 10 11  8  7
R: 15  8 11 15 13 12 15 11  6  9 10 12 11 16 10  9 10 11 16  7 10 10 12  9 15  7
S: 12 13  9 12 19 14  7 13  9  9 15 13 10  9  7  5 10 19 13 12 15 12 13 13 12 20
T: 10 12 15 16 12 10  9 11 15 18 15 12 11 14 12 12 14 13 11 18 15 13 13 10  9 15
U: 11 14  9 28 13 18 13 15 10 12 16 13 10 21 13  5 13 11 13 17 12 10 12 16 11 12
V:  8 13 14 12 18 10  9 14 16 14  8 13 15 16 14 13  9 14  9 19 10 15 13  7 13 11
W: 13 11 19 13 15 12  7 10  9 16 19  8 11 10 11 11 13  7  9 16 17 16 18 18 15 14
X: 11 15 14 10 14  9  9 22 14 10 10  8  9 11 11  5 28  7 13 14 11 11 13 13 13 10
Y: 20  8  9 15  9 12 14  6 15 13 15  7 16 10  9 10  9  9  9 12  8  9  9 14  6 16
Z: 14 13 14 16  9  7 14 12 10 17 12 14 12 13 14  8  8 15 22 10  8 12 16  7 10  8
  323316335327323327315306305323333318287347287264289290315335348327337315289315

C:\H5_TOOLS> python fried_new.py -I 5 < MSGS\conf_naval.stripped
    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
A:  9 16 10  8 13 28  9 11 20 11  6 13  9 14 11  9 10  7  9 11 19 13 17 16 14 10
B: 13 11  9 13 10 10 21  9  6 17 19 10 11 13 12 11  8  9 15 14  9 17 23 10  7  9
C: 17  7 11 14  9 13 19  9 10 11 11 24 11 13  7  9 12 16 18 14 17 12 15  9 11 15
D: 12 11  7  8 11 17  8 17 14 14 10 13 12 18 15 14 13 14 11  9  8 15 12 13 11 20
E:  9 23  9 13 13 10 10 11 14 13 16 15 12 14 11  9 11 19 16 13 16  6 12  8  9 11
F:  5  9 20  6 10 15  8 10 15 11 10 12 14 16 12 14 11 10 17 11 21 12 14 17 13 14
G: 10 11 12 16 24  6 12 15  9 17 11  8 13 13 14  9 12  7 14 14 12 16 14  8  6 13
H: 10  8 12  8  9  9 13 12 11 13 16 13 16 19 12  7  9 12  5 14 15 17  9 12 16  8
I: 11  7 11 23 12 18 11  8 14 16  9  6  9 14  7  6 16 12  6 10 12 19 16 10 12 10
J: 13 11 10 13 16 13 15 16 13  4 13  6  8 17 18 17 11  8 14 12 13 12 13 14 11 12
K: 11 17 10 10 15 12 15 25 15 10 20 18 13 15  9 12  7 12  9  8 12 13 12 14  5 15
L: 16 14 13 22  9  9 10 16 15 16  9 13 12 10  8 14 11 11 14 14 10 13  4 12  9 13
M: 11 12 12  8  6  8 10 11 12 13 21  6  7 14 18  7  6  6 14 10 13 10 19  8 13 12
N: 18 17 13 16  8 13 12 10 15 13 22 12  6 13 10  6 23 13 11 13 16 15 12 15 14 11
O: 25 14 15  7  7 15 11 11 13 10  8  8  6 15  9 10  8  6 13  9 12 13 11  9 17  5
P: 12  7 12 11 14 13  8 13  9 12 11 11 11 11  7  7 10  4  8 15  7  3 13 12 11 12
Q: 13  4  6 10 12 14 10  9 10 12 14 14  5 12 14 10  8  7 21 13 12  8 13 13 11 13
R: 12 14 12 17 15  4 17  8  8 12 11  6 16 11  7 15  9 17 12  9 12  7  5  8 12 14
S: 16 23 12 10  9 14  8  9 12 16  9 15  7 11 14  6 11 17 10 15 17 14 11 11  6 12
T: 14  8 18 16 16 14 12 14  9 14 10 18 10 14 10  9  7 17 12 11  9 10 12 16 12 23
U: 11 10 10 16 22 19 14 14  9 13  9 16 15 10 12  8  9  7 19 16 15 16 14 14 24  6
V:  7 11 17 11 15 13 13  9 15 11 16 11 18 13 11 11 13 10 10 11 11 17 22 12 11  8
W: 11 13 20 11 15 14 10 10 10 11 11 15 14 10 10 16 18 14  7 25 15 13 14 11  7 13
X: 10 13 16 10 10  9  9 11  8 13 13 11 16 16  8 12 11 14 12 18 15 14 14  6 10 15
Y:  9 12 11 11 13  8 15 10 14 11 14 10  7  8 11  9 11 15  6 13 17 10  4 19 10 11
Z: 18 13 27 19 10  9 15  8  5  9 14 14  9 13 10  7 13  6 12 13 12 12 12 18  7 10
  323316335327323327315306305323333318287347287264288290315335347327337315289315

C:\H5_TOOLS> python fried_new.py -I 6 < MSGS\conf_naval.stripped
    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
A: 10 15 13 11  8 13 14  8 12 13 17 18 16 14 12 10 10  8 15 12 10 19 11 15 10  9
B: 16 15 12  9 10 20 12 18 15  9 14 16  6 12 16  7 12 11  5  9 11 11 13 14 12 11
C:  5  9 20 16 17 14 12  8  9 14  7 12 10 20 14  9 10 12 17 19 15 11 16 18 11  9
D: 14 11 17 15 15  8 10  6 11 13  9 13  9 16 14 12  8  8 11 15 19 17 17 10 11 18
E: 16 10 11 18 11  6 11 10 11 15  9 17 13 11  8 13 13  9 18 14 10 17 16  7 20  9
F: 17 10 12 13  8 11 12  7 13 11 31 10 11 17 12 11 17  6  9 10 10 13 12 13 13 18
G: 10 11 10 15 14  6  8 10 14  9 14 12  5 11 13  8 13 14 11 17 13 16 11 16 18 17
H: 10  6 12 13 20  8  8 10 11 21  6 14 12 10 12 14 13 11 12 11 12 14  8  9 15 13
I: 15 11  9  6  4 17  8  8  4 14 18 11 14 16 13 16 13 10 10 11 26  8 11 10 10 12
J: 11 10 13  8 14 11 25 13 13 11  9  9 17 15 15  7 10  9 13 15 17 15 15 11  6 11
K: 19 15 16 12 10  9 11 11 12 13 11 14 10 14  5 21 13 16 14 15 12 15 15 11  7 13
L: 10 18 17 14 12  8 22 18  9  7 15  6 12 13 14 10 12 12 13  9 17 11 13  9  9  7
M:  9  8 10 15 12 13 11 11  7 13  8 11 14 14  6  7 11 10 10 10 10  9 17 20 11 10
N:  9 12  8 21 10 22 15 17 15 20 19 15 10  5 13  3 22 10 11 15 13 19 12 10  8 13
O: 13 14 11  9 17  9 11  7 12 13 12 10  5 14  7 10 11  8  8 15 13  5 14 18 13  8
P: 11  9 18  7  8 10 13 12 11 10 12 10 10 14  4  8  8  5 11 12 11  9 14 11  9  7
Q: 13 15 17  8  7 15  8 14 16  7  9 19 10 14  8  7  7  6  6 10 17 12 10 15  6 12
R: 17 12 13 17 12 14 14  9 12  8 16  8  7 12 10 10  5  7 13 12 16  8 10  6 11 11
S:  6 17 11 16  9 12 12 13  9 14 15 10  8 17 11 13 16 18  7 12 11  8 13 11 15 11
T: 14  9  9 15 15 14 10 13  8 16 10 13 16 12 12 13 12 14 20 14 17 15 11 15  7 11
U: 16 12 16 11  9 16  8 23 12 12 12 12 14 12 10 17 11 16 18 16 11 10 11 14 16 12
V:  9 14  7  7 17 14  9 18 13 15 14  9 10 28 10 13  8 12 10 12 16 12 15  8 12 15
W: 16 12 18 15 11 14 12 11 16 16 12 16 15  9  9  3 12 24 14 16  8 12  8 15  8 16
X: 11 19 12 13 24 14 15  6 16  9 12  9 13 10 11  7  7 13  7  8 12 12 15 11 15 13
Y: 12 12 10 13 14 14 12 12 15  7 12 10 10  8 19  7  7 13 14 15 11  8 10  7  7 10
Z: 14 10 13 10 15 15 12 13  9 13 10 14 10  9  9  8  7  8 18 11  9 21 19 10  9 19
  323316335327323327315306305323333318287347287264288290315335347327337314289315
We can deduce (with a very small margin of error) the following intervals:
C..I,   D..U,   L..F,   Q..X,   Y....U,   T....W,   H.....U
With all this data, we are finally able to reconstruct the rotor wiring in position V:
    J . . . Z . . . B . . . U
    J . . . Z . H Y B . R . U . L . . F         
    J O . . Z . H Y B . R K U . L E . F . T . . . N W .
    J O I . Z . H Y B . R K U . L E M F . T G . . N W .
    J O I . Z . H Y B D R K U . L E M F . T G . . N W C
    J O I V Z P H Y B D R K U S L E M F Q T G X A N W C

A few comments

The wiring found is offset

If we compare the wiring found to the wiring used to create the cryptogram, we can see that its defining sequence is shifted:
 Genuine rotor: F Q T G X A N W C J O I V Z P H Y B D R K U S L E M
 Rotor found  : J O I V Z P H Y B D R K U S L E M F Q T G X A N W C
Actually, it doesn't matter. This can be seen using two wirings for the rotor V and note that the decipherments provide isomorphic messages.

Here is an example where the same ciphertext is decrypted with two offset sequences for rotor 5. As we ignore the wiring of the other rotors, we use the identity permutation to each.

C:\H5_TOOLS> more ROTORS\0.rot
ABCDEFGHIJKLMNOPQRSTUVWXYZ

C:\H5_TOOLS> more ROTORS\5.rot
FQTGXANWCJOIVZPHYBDRKUSLEM

C:\H5_TOOLS> more ROTORS\5_shift_3.rot
GXANWCJOIVZPHYBDRKUSLEMFQT

C:\H5_TOOLS> echo PRESIDENTOFTHEUNITEDSTATESI | ^
   python hebern5_tui.py -E ZZAAAZN -I 1:2:3:4:5  ^
VNOHFUWGXGFBZZSWCTACYSENKOT

C:\H5_TOOLS> echo VNOHFUWGXGFBZZSWCTACYSENKOT | ^
   python hebern5_tui.py -E ZZAAAZN -I 0:0:0:0:5 -d 
ABJEWZJUXKMXFJCUWXJZEXQXJET

C:\>H5_TOOLS> echo VNOHFUWGXGFBZZSWCTACYSENKOT | ^
   python hebern5_tui.py -E ZZAAAZN -I 0:0:0:0:5_shift_3 -d
PAULESUYFRGFJUDYEFUSLFOFULX
Let's compare the two decryptions:
1)     A B J E W Z J U X K M X F J C U W X J Z E X Q X J E
2)     P A U L E S U Y F R G F J U D Y E F U S L F O F U L
Plain  p r e s i d e n t o f t h e u n i t e d s t a t e s
e      . . e . . . e . . . . . . e . . . . e . . . . . e .
t      . . . . . . . . t . . t . . . . . t . . . t . t . .
s      . . . s . . . . . . . . . . . . . . . . s . . . . s

We can see that we have many isomorphic decipherments: Thus, the plain letter "E" is encrypted by "J" with the rotor 5 and it is encrypted by the letter "U" if we use the rotor 5 offset by three positions.

Web Links